Curso Básico de Hidráulica Marítima con aplicaciones en MATLAB

Profesor: Michel Robles Villalva Bachiller en Ingeniería Mecánica de Fluidos Universidad Nacional Mayor de San Marcos (UNMSM)

Sobre el docente

Bachiller en Ingeniería Mecánica de Fluidos de la Universidad Nacional Mayor de San Marcos (UNMSM) con experiencia en elaboración de estudios Hidrográficos e Hidro - Oceanográficos, con amplios conocimientos en modelación numérica en Oceanografía Física e Hidráulica Marítima.

Descripción del curso

Este curso tiene como objetivo proporcionar a los estudiantes una comprensión sólida de los principios de la hidráulica marítima, combinando teoría y aplicaciones prácticas. Los estudiantes aprenderán a utilizar MATLAB para modelar fenómenos como oleaje, mareas y transporte de sedimentos. Además, se les capacitará en el manejo de datos mediante archivos NetCDF, permitiendo una mejor comprensión de los procesos que ocurren en las zonas costeras.

Contenido del Curso

- Semana 1: Introducción a MATLAB y Conceptos Básicos de Hidráulica Marítima
- Semana 2: Teoría de Olas
- Semana 3: Predicción del Oleaje
- Semana 4: Introducción a la Teoría de Mareas
- Semana 5: Transporte de Sedimentos

Semana 1: Introducción a MATLAB y Conceptos Básicos de Hidráulica Marítima

- Introducción básica a MATLAB: comandos, manejo de variables, y creación de gráficos.
- Lectura de archivos NetCDF (.nc), csv, xlsx, entre otros y manipulación de bases de datos.
- Introducción a la hidráulica marítima: conceptos básicos, objetivos y aplicaciones en ingeniería costera.

Semana 2: Teoría de Olas

- Fundamentos de la teoría de olas lineales y no lineales.
- Propagación de olas en aguas profundas y someras.
- Energía de las olas.

Semana 3: Predicción del Oleaje

- Métodos de predicción del oleaje: análisis estadístico y métodos espectrales.
- Simulación de oleaje en MATLAB: ejercicios prácticos.
- Validación y análisis de datos de oleaje en MATLAB.

Semana 4: Introducción a la Teoría de Mareas

- Conceptos básicos de las mareas: causas y tipos de mareas.
- Análisis armónico de mareas y su aplicación en predicción.
- Procesamiento de datos de mareas en MATLAB.
- Introducción al uso del toolbox T-Tide de MATLAB.

Semana 5: Transporte de Sedimentos

- Introducción al transporte de sedimentos en zonas costeras.
- Métodos de estimación del transporte litoral y de fondo.
- Simulación y visualización de transporte de sedimentos en MATLAB.

Bibliografía

- Dean, R. G., Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and Scientists. Prentice Hall.
- Kraus, N. C. (2000). The Effects of Waves on Coastal Structures. ASCE Press.
- Sorensen, R. M. (2006). Basic Coastal Engineering. CRC Press.
- Simons, D. B., Senturk, F. (1992). Sediment Transport Technology. Water Resources Publications.
- Arntsen, O. J., Aas, E. (2016). Introduction to Oceanography. Wiley.
- U.S. Army Corps of Engineers. (1984). Shore Protection Manual. U.S. Government Printing Office.